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Summary
Biochemical networks, including those containing sig-
naling pathways, display a wide range of regulatory
properties. These include the ability to propagate infor-
mation across different time scales and to function as
switches and oscillators. The mechanisms underlying
these complex behaviors involve many interacting com-
ponents and cannot be understood by experiments
alone. The development of computational models and
the integration of these models with experiments pro-
vide valuable insight into these complex systems-level
behaviors. Here we review current approaches to the
development of computational models of biochemical
networks and describe the insights gained from models
that integrate experimental data, using three ex-
amples that deal with ultrasensitivity, flexible bistability
and oscillatory behavior. These types of complex beha-
vior from relatively simple networks highlight the neces-
sity of using theoretical approaches in understanding
higher order biological functions. BioEssays 24:1110–
1117, 2002. � 2002 Wiley Periodicals, Inc.

Introduction

An intracellular signaling cascade can no longer be viewed as a

linear pathway that relays and amplifies information. There is

now evidence that shows that the cell uses these pathways as

a way of integrating multiple inputs to shape a uniquely defined

output.(1,2) Hence the interactions of different pathways and

the dynamic modulation of the activities of the components

within signaling pathways can create a multitude of biological

outputs. The cell appears to use these complex networks of

interacting pathways and regulatory feedback mechanisms to

co-coordinately regulate multiple functions.(3,4) These outputs

allow the cell to respond to and adapt to an ever-changing

environment. Due to this increasing complexity, it is often not

possible to understand intuitively the ‘‘systems behavior’’ of

signaling networks. Rather it has become necessary to devel-

op formal models of these sets of interactions and analyze

the behavior of these models both to develop a systems-

level understanding and to obtain experimentally testable

predictions.

Theoretical analysis of biochemical networks has a long

history, and has been successfully applied to the analysis of

metabolic pathways and physiological processes.(5,6) Com-

putational modeling has emerged as a powerful descriptive

and predictive tool that allows the study of complex sys-

tems.(7–9) This approach is becoming increasingly useful in

many areas of biology, including in the study of signaling

pathways given the identification of a growing number inter-

actions within and between signaling pathways in the cell. The

explicit modeling approach should allow the monitoring of

the effects of multiple signal inputs that may arrive simulta-

neously and/or sequentially and the subsequent processing

and integration of these signals. Such analysis would lead to

understanding of the complexity underlying the higher order

functions of signaling networks, and may even help identify

novel properties that would not be observable by the study of

isolated signaling pathways.

Computational models should represent the biological

system as accurately as possible and be able to mimic the

behavior of the system over a wide variety of conditions. For

this to occur, the model should be based on and fully cons-

trained by experimental data. The amount and quality of the

available experimental data will largely determine the fidelity of

the model. There is a large and substantial body of literature

that provides information on biochemical parameters. Collect-

ing parameter information from the published literature is one

important aspect in the development of computational models.

However, often this is not sufficient. As these models become

morecomplex, itwill becomenecessary togatherexperimental

data in an explicit manner for computational analysis. Such

data should include cellular concentrations of the components

as well as the kinetic constants for interactions between com-

ponents. Even when most of the required experimental data is

available, the development of accurate models requires con-

sideration of a number of issues in terms of the appropriate

underlying mathematical assumptions and computing envir-

onments. Here we review current approaches to modeling

signaling pathways and networks.

Signaling modules and connections maps

Building complex models of signaling networks is best

accomplished in a step-wise manner. One of the first steps

involves the definition of reactions involved in terms of
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modules that can be both experimentally constrained and

computationally analyzed. In order to do this, operational

boundaries, which do not exist in the cell, may have to be

created. For example, when modeling growth factor activa-

tion of MAP-kinases through receptor tyrosine kinases and

the small GTP-binding protein Ras, in order to model the

activation of MAP kinase, one may decide to use as an input-

activated Ras. The output may be the dually phosphorylated

MAPK or a component further downstream such as the acti-

vated transcription factor Elk. Once a valid model has been

created for Ras activation of MAPK, one could add another

level of activation by modeling the dynamics of the growth-

factor-ligand-dependent activation of receptor tyrosine kinase,

and the recruitment of adaptor proteins that lead to the acti-

vation of Ras. Hence the cascade of protein kinases from Raf1

to MAP kinase pathway could be considered one module, and

the growth factor interaction with the receptor tyrosine kinase

to activation of Ras could be considered another module.(10)

If we want to study how the cAMP pathway inhibits signaling of

the growth factor pathway, this can be set up as a third module

with the connection between the cAMP and MAP-kinase

pathways represented as protein kinase A inhibition of c-

Raf.(11–13) Thus one can construct a three-module system

to computationally study how the activation of Gs-coupled

receptors can modulate signal flow from receptor tyrosine

kinases to MAP-kinases 1,2. A schematic representation of

these modules is shown in Fig. 1. It should be noted that

these modules do not correspond to more conventional

cell biological boundaries such as membrane-delimited or

cytoplasmic events. The boundaries of the modules are often

defined by functional input–output relationships. Modules may

also reflect spatial locations in the cytoplasm, as defined by

protein scaffolds and anchors. For instance, in some systems,

Raf, MEK and MAP-kinase are bound to a scaffold.(14)

We have found such an approach to be very useful in

developing models of signaling pathways that interact with

each other to form networks.(1,15) Indeed it has been

suggested that, in a general sense, all biological studies may

be moving from a molecular to modular phase.(16) The ability to

define ‘‘modules’’ has considerable operational advantages

during the building of models. It enables the size of individual

units to be constrained by including a limited (and manage-

able) number of components. Additionally, by carefully

defining the inputs and outputs of the modules, it is often

possible to use experimentally obtained input–output relation-

ships to constrain the overall behavior of the modules. The

assembly of the modeled modules in a combinatorial manner

can then be used to create complex pathways and networks,

and these in turn can be analyzed for the identification of novel

emergent properties that the individual modules by them-

selves do not show. Typically these modules can be written as

connection maps, such as those that we have generated for

the heterotrimeric G protein pathways at Science’s STKE web

site.(17) These connections maps are qualitative in nature. The

identity of the components and their interactions are defined

but quantitative information about both the components and

interactions are needed to develop predictive models. There

are several databases available that contain information on

protein interactions that can be helpful in setting up the initial

connections maps. These are listed in Table 1.

Figure 1. Signaling modules. Schematic diagram of

signaling modules that can be operationally created to
constrain the scope of a model of a signaling network. For

example, signaling through the epidermal growth factor

(EGF) receptor involves the autophosphorylation of the
receptor itself, the recruitment of the adaptor proteins Shc

and Grb2, and activation of the guanine exchange factor

Sos. Sos in turn is able to activate the small GTP-binding

protein Ras. This module has been modeled.(10) Ras
activation leads to the activation of the MAP kinase

module and this involves the activation and autophos-

phorylation of the MAP kinase kinase kinase Raf, which in

turn phosphorylates the MAP kinase kinase MEK, and
finally MEK activates and phosphorylates MAP kinase.(1)

Raf can also be modulated by an inhibitory phosphoryla-

tion event by protein kinase A (PKA). PKA activation
has been modeled in response to adenylyl cyclase (AC)

activation.(1)
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Reaction parameters

Once the connections maps have been set up, the next step

is to collect the parameter information needed for each of

the components and their interactions (Fig. 2). This involves

concentrations for each component, kinetic rate constants for

interactions and enzymatic reactions, and diffusion rates, if

the model involves spatial parameters. Some of this informa-

tion is available in the original biochemical literature. However,

in most cases, the quantitative information has to be manually

extracted from the primary literature and entered into the

database. This is a laborious process and is possible only

for components that have been purified from native sources.

An initial version of such database has now been created by

Bhalla and co-workers (DOQCS, Database of Quantitative

Cellular Signaling URL: docqcs.ncbs.res.in) and has been

used in our quantitative models. Although the information in

this database is limited, it is detailed and annotated. Indeed

with data extraction from the primary literature, annotation and

explicit statement of assumptions becomes a critical factor in

defining the biochemical parameters. Contextual information

is crucial for parameter selection and development of realistic

models. These criteria are likely to be increasingly important

as large-scale data-gathering efforts get underway. The quan-

titative data in these endeavors need to be appropriately an-

notated so that the larger biological community can use them.

A reasonably clear division currently exists for components

and interactions for which quantitative parameters can be

estimated versus those for which it is currently not feasible.

Proteins that were biochemically purified prior to cDNA cloning

most often have a reasonable amount of biochemical data

available. However, with the advent of homology cloning and

yeast two-hybrid screening techniques in molecular biology,

many proteins were first known from their cDNA clones. Here

the biochemical data is obtained from heterologous expres-

sion systems such as bacteria or insect cells and it is not

entirely clear how representative the reaction parameters

obtained from the heterologous systems are of the native pro-

teins. Additionally almost always missing is the cellular con-

centrations of key components in the native systems.

If parameter information is scarce or incomplete, it is

sometimes feasible to create models that will fit the observed

input–output relationship data.(18) This approach can yield

valuable models, especially if there are a lot of experimental

data available that can be used to constrain themodel. In cases

Table 1. Brief list of web-accessible databases

containing information on protein–protein

interactions and signaling pathways

Database URL

Alliance for Cell Signaling www.cellularsignaling.org

Biomolecular Interaction Network

Database

www.binddb.org

Database of Interacting Proteins dip.doe-mbi.ucla.edu

Database of Quantitative Cellular

Signaling

doqcs.ncbs.res.in

Kyoto Encyclopedia of Genes

and Genomes

www.genome.ad.jp/kegg/

PathDB www.ncgr.org/pathdb/

Proteome www.proteome.com

Science’s Signal Transduction stke.sciencemag.org

Knowledge Environment transpath.gbf.de/

Transpath

Figure 2. Flow diagram of the steps involved in the

creation of a computational model. Initially, the model
is defined as a connection map based on available

biological data. Once the reaction schemes are set up,

parameter information is collected from the existing bio-

chemical literature; input–output experimental data that
constrain the model are also collected. Parameters may

be estimated and obtained with the use of data-fitting

analysis software. Once all the parameters are obtained,

a kinetic model is developed and a simulation is created.
The simulation will give rise to predictions that can be

compared with the experimental data.
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where the mechanistic details are unclear, it is sometime pos-

sible to fill in the gaps with the simplest mechanisms available.

The assumption can then be subsequently experimentally

verified. Another option would be to use mechanisms imple-

mented by similar pathways. However all of these assump-

tions need to be carefully evaluated and explicitly considered.

Almost all models have some assumptions and it is imperative

that the costs of the assumptions in creating the models be

weighed against the potential benefits in terms of predictions

and systems-level understanding. Predictions are especially

valuable since they can lead to iterative experimental con-

straining of the models. By use of these approaches, one

can set detailed models of kinetic reaction schemes. Many

examples that have been used by Bhalla and Iyengar are

available at DOQCS (URL: doqcs.ncbs.res.in). A summary of

the steps involved in the modeling is shown schematically

in Fig. 2.

Simulations

The completed reaction schemes can then be used to create

simulations, and these simulations can be compared with

the experimentally observed input–output relationships. On

the one hand, if the simulations can mimic with reasonable

accuracy the characteristics observed in the original experi-

mental system then the overall mechanism predicted in the

model is likely to be valid. A valid model can then be analyzed

to obtain predictions about any novel properties and higher

order cellular capabilities that the signaling network may

possess. This can be done by parameters variation and

altering the internal connectivities to represent various bio-

logical states, and determining how these changes may

modulate the output(s) of the network. Such manipulations

can give rise to new experimental questions, and be useful

in developing a better understanding of the organizational

principles that the cell uses to regulate information flow.

If, on the other hand, the simulations fail to mimic the

experimental results, the mechanism proposed is faulty or in-

complete and more experimental data is needed to better

understand the biological system and define the model. In this

case, the model can still be informative since it may help

identify the types of data that it are still unknown and are

needed for a better understanding of the system. Thus both

successes and failures in model development can be of value

in defining new experiments.

Modeling methods

Several modeling environments are now available that can be

used to develop kinetic simulations of signaling pathways and

networks. These programs can simulate the steady-state and

kinetic behavior of reactions. There are at least ten programs

currently available and space limitations preclude a detailed

discussion of each. A listing of these programs and links are

available at the DOQCS site. Each of these software suites

has features that make them particularly suitable for specific

purposes. Due to limitations in our expertise, we have select-

ed three programs that we use in our laboratory for further

description. At their core, all of the modeling programs use

built-in differential equations and solve them, in a transparent

manner. Generally, the user does not need to specify the

mathematical methods required for the simulation or be knowl-

edgeable about the programming codes used. This allows the

user with limited mathematical/computational background

to develop and analyze models. Although detailed technical

knowledge is not necessary, it is essential that the appropriate

mathematical representation for the biological system that is

being studied is used. For this, the practicing biologist will need

to have an adequate understanding of mathematics. The

results from the simulation can then be plotted using built-in

plotting programs or the data can be easily exported to spre-

adsheets. In addition to the specialized programs for biologi-

cal simulations, general mathematical analysis programming

environments such as MATLAB or MATHEMATICA can also

be used for biological models.

The three programs that we use are briefly described

below. Each program has its own key features and all three of

them can be used in a coordinated fashion to complement

each other and optimize different aspects of a single model.

Genesis/KinetiKit:
(URL: www.ncbs.res.in/�bhalla/kkit/index.html)
Kinetikit is a graphical simulator for modeling signaling

networks(1). It runs with the large-scale General Neural

Simulation System (GENESIS). This modeling program has

been widely used for the simulation of biological pathways in

our laboratory. It has a user-friendly graphical interphase and

substantial computational power. Since it uses a UNIX plat-

form both KinetiKit and Genesis are very stable and fast.

Although this is a very useful program, it has limitations as

currently configured. Genesis can solve only ordinary dif-

ferential equations (ODE) and hence the program can only

use a deterministic approach to modeling that assumes a

‘‘well-stirred’’ reaction where every molecule has equal access

to any other molecule. Often such deterministic models are

quite valid and in such cases the KinetiKit-GENESIS platform

is quite useful.

Gepasi 3 (URL: www.gepasi.org)
GEPASI 3 is a modeling platform that allows the simulation of

biochemical pathways.(19) GEPASI 3 runs on the Windows

operating system and is able to carry out steady-state and

time-course simulations. GEPASI provides the user with

several choices of output for the data generated in the

simulation, in a graphical form or in a spreadsheet form. One

feature of GEPASI that is useful is its parameter scan

capability.(20) The user is able to select the parameter that

will be varied, and the range and extent of the variation and
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develop a set of simulations that can be compared with

experimentally observed data. This feature can then be used

to optimize, fit or even estimate unknown parameters to simu-

late experimentally observed input–output relationships.

Virtual Cell (URL: www.nrcam.uchc.edu)
Virtual Cell is a computational environment that uses a web-

based graphical interface for the user to input the data needed

for the model.(21) This usually involves a collection of mole-

cules, with their respective parameters and subcellular loca-

lizations. Virtual Cell is especially useful when the model

requires a strict spatial organization, which allows a more

geometrical model where the flux between compartments

can be simulated. The model is built using a graphical interface

that allows the user to determine the geometry of the model.

Virtual Cell uses two separate numerical solvers: one for their

kinetic modeling that uses Ordinary Differential Equations

(ODEs) and another for their spatial modeling that uses Partial

Differential Equations (PDEs). The output of data in Virtual Cell

is in different formats: spreadsheets, pseudocolor images that

can represent the modulation of spatially restricted molecules

over time, and QuickTime movies.

Emerging concepts from models of signaling

and biochemical networks

There are several emerging concepts that are likely to be key

elements of the organizational principles used by the cell.

These concepts are being discovered with the use of com-

putational modeling and experimentation that are closely

linked to the models. Some of these concepts include ultra-

sensitivity, bistability and rhythmic behavior. This is undoubt-

edly a partial list and one of the future goals will be to develop

a more complete list of systems-level properties of a cell.

However, it is nevertheless useful to consider how these

systems-level properties are being currently identified and the

underlying molecular mechanisms elucidated. We consider

three examples where feedback loops, which are a ubiquitious

feature of biological systems, can be adapted to yield distinct

systems-level properties.

Ultrasensitivity
Ultrasensitivity, a term used in quantitative biochemistry de-

fines a response that is more sensitive to ligand concentration

as compared to standard responses defined by the Michaelis–

Menten equation.(22,23) When applied to signaling pathways

ultrasensitivity indicates that a response is more sensitive to

extracellular stimulation than the normal hyperbolic response.

A classical Michaelis–Menten reaction exhibits a simple

hyperbolic reaction velocity curve, while an ultrasensitive

reaction displays a sigmoidal curve. One of best examples of

ultrasensitive responses has come from the work of Ferrell and

Machlesder(24) on Xenopus oocytes, where they are able to

show ultrasensitive responses in the MAP-kinase pathway to

progesterone.

Progesterone triggers the maturation of oocytes by pro-

moting their exit from a G2 phase arrest and their further

progression into meiosis, where they are arrested at meta-

phase of meiosis II until fertilization. This re-entry into the cell

cycle is dependent on the activation of the MAP-kinase cas-

cade by progesterone and the eventual formation of the cyclin-

dependent kinase 2 and cyclin B complex.(25–27) This pheno-

menon is digital (the oocytes mature or they fail to mature)

and irreversible (once they mature they remain in their ma-

ture form). Ferrell and co-workers had initially shown that

oocyte cell extracts with activated Mos (the MAP-kinase

kinase Kinase in this system) display an ultrasensitive MAPK

response.(28) Thus activation of Mos leads to the creation of

one of two species of MAPK, the phosphorylated or the non-

phosphorylated. Rarely are both species seen simultaneously,

which suggests a highly cooperative cascade. MAP-kinase

activation by Mos displays a Hill coefficient of 5 suggesting

extensive cooperativity and ultrasensitivity.

Interestingly, when a population of oocytes was treated with

progesterone, the overall response resulted in graded MAPK

activity.(24) This response showed Michaelis–Menten kinetics

and a Hill coefficient of 1 (no cooperativity or ultrasensitivity).

However, when the MAPK response of individual oocytes to

progesterone was quantitated, a clear all or none response is

observed. Thus each individual oocyte responded to a specific

concentration of progesterone with either complete activation

of MAPK or no activation of MAPK. This behavior can best be

described as a switch-like response. The observed ultrasen-

sitivity response has been linked to the intrinsic ultrasensitivity

in the requirement of the MAPK cascade on its non-processive

dual phosphorylation mechanism for activation. There is also

the contribution of a positive feedback loop that appears to

increase Mos levels transcriptionally.(24,29)

Models were developed where the effects of ultrasensi-

tivity and the feedback loop on the activation of the MAPK

were assessed. Together, ultrasensitivity and the feedback

loop yield a sharp switch-like response. The model provided

valuable insight into determining that both ultrasensitivity

(the intrinsic cooperativity of the pathway) and the positive

feedback loop were responsible for the observed response.

Thus in this case the model was very useful in giving

mechanistic insight into the cellular machinery involved in the

switch-like behavior.

Flexible bistability
Within signaling pathways, feedback loops can give rise to

switching properties that allow for information propagation

across time scales. Bhalla and Iyengar (1999) had proposed a

positive feedback loop within the growth-factor-stimulated

MAP-kinase pathway. MAP-kinase is known to activate

cytoplasmic-phospholipaseA2, which produces arachadonic
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acid, which can activate the typical forms of protein kinase C

at basal levels of diacylglycerol.(30–33) The protein kinase

C in turn activates Raf, the most-upstream protein kinase in

the MAP-kinase cascade.(34,35) This feedback loop behaves

as a switch such that a brief growth factor stimulus can

lead to sustained activation of MAP-kinase. The activation of

MAP-kinase leads to the induction of MAP-kinase phospha-

tase, a dual specificity phosphatase that can deactivate MAP-

kinase.(36) This simple network is shown in Fig. 3A. The

coupling of the positive and negative feedback loops could

Figure 3.
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under certain conditions lead to oscillatory behavior. However,

detailed simulations indicated that such behavior does not

appear to occur in a physiologically relevant manner.(37)

Further analysis has shown that the induction of MAP-kinase

phosphatase can move the system from a bistable to a mon-

ostable state. In the monostable state, the system is res-

ponsive in a proportional manner to varying concentrations

of growth factor ligands. These systems-level predictions

were tested in a model system, NIH-3T3 fibroblasts. Here, it

was experimentally observed that brief (5 minute) treat-

ment with the growth factor PDGF resulted in sustained

(for over 40 minutes) activation of MAP-kinase and that the

feedback loop required the activities of both phospholipase A2

and protein kinase C. This is shown in Fig. 3B and C. Fig. 3B

shows the simulation and Fig. 3C the activation of MAP

kinase in NIH-3T3 cells after a 5 minute stimulation by PDGF.

According to the simulation, when the MAP-kinase phospha-

tase levels are low the system was capable of responding in a

switch-like manner with sustained activation of MAP-kinase

after a brief stimulus (Fig. 3D, upper curves). However, upon

the induction of MAP-kinase phosphatase, sustained activa-

tion of MAP-kinase is not observed. This is shown in the middle

and lower curves of Fig. 3D. Thus, at high MAP kinase

phosphatase levels, only an early proportional response in

MAP kinase activation was observable.(38) This predicted

behavior can be experimentally observed in NIH-3T3 cells, at

low MKP levels, a 5 minute PDGF stimulation results in MAP

kinase being activated for more than 30 minutes. While at

high MKP levels, MAP kinase is deactivated between 15 and

30 minutes (Fig. 3E). The MAP kinase pathway can show both

monostable and bistable behavior and can move between

these two states in a regulated manner. These observations

indicate that the system is designed in a flexible manner. Here

the systems-level predictions were very useful in designing

appropriate experiments. The experiments allowed us to ob-

serve systems type behavior that we do not normally look for in

molecular analysis. Additionally, one interesting aspect of this

study was the identification of MAP-kinase phosphatase as the

locus of flexibility. Thus, we are able to ascribe systems-level

properties to key components.

Rhythmic behavior
Two examples described above represent natural systems

that are analyzed for systems properties using a combination

of experimental and computational approaches. There are

also interesting ‘‘reverse engineering’’ approaches being used

to create artificial systems that display higher order behavior

that is widely observed in natural systems. Several such gene

regulatory networks have been recently reviewed.(39) Here we

discuss one example. Elowitz and Leibler have recently con-

structed a gene regulatory network that functions as a syn-

thetic oscillator.(40) This network involves three transcriptional

repressors organized in a negative feedback loop and mon-

itored by the expression of the reporter Green Fluorescent

Protein (GFP). This type of network created oscillations that

could be monitored by observing the GFP expression and

the resultant fluorescence in E. coli colonies. The oscillatory

behavior was simulated using both kinetic and stochastic

models that describe the modulation of the components over

time. Periodicity in this oscillatory system was in hours and

thus the oscillatory cycles were longer than the bacterial cell

cycle. The oscillations were present even after the bacterium

divided, and they remained correlated in some of the siblings

for some time. A noteworthy aspect of this study was the

biological system that was developed to fit the design of the

model. Thus the biological system was optimized to yield

the desired output. The optimization consisted of using strong

promoters that could be effectively modulated by the repressor

protein, and of decreasing the half-life of the repressor protein

by adding a degradation tag. Of course such studies can be

criticized as being too artificial and not providing insight into a

natural system. While the system is undoubtedly artificial, this

Figure 3. An example of a modeling study comparing modeling predictions and experimental data. A: Schematic representation of the

proposed MAP-kinase network.(38) Boxed in light green are the components involved in the positive feedback loop. Boxed in yellow are the
components involved in the negative feedback loop. Abbreviations: PDGF-R, platelet-derived growth factor receptor; MEK, MAP or ERK

kinase; MAPK, MAP-kinase; MKP, MAP-kinase phosphatase; PP2A, protein phosphatase 2A; cPLA2, cytoplasmic phospholipase A2; AA,

arachadonic acid; PKC, protein kinase C; DAG, Diacylglycerol. B: Simulation of MAP kinase activation levels as a function of time after
5 minute PDGF stimulation (bar depicts stimulation period). C: MAP kinase activation in NIH-3T3 cells after 5-minute PDGF stimulation.

After stimulation cells were washed and MAP-kinase activity measured at indicated times. Top panel shows phospho-MAP kinase

immunoblot. It can be seen a brief stimulation by PDGF leads to sustained activation of MAP-kinase.D:Simulation of MAP kinase activation

levels as a function of time with varying concentrations of MAP kinase phosphatase (MKP) as achievedby varying rates of synthesis of MKP,
denoted by the blue marker. Lowest rates of MKP synthesis are at the top and highest at the bottom.E:Effect of MKP levels on MAP kinase

activation state in NIH3T3 cells. Cells were serum starved and then stimulated with either vehicle (red trace) or PDGF (black trace)

for 5 minutes to induce MKP synthesis. The cells were serum starved again for 60 minutes and re-stimulated with PDGF for 5 minutes.

MAP-kinase-activity was measured at indicated times after second stimulation Top panel shows phospho-MAP kinase immunoblots
corresponding to the restimulated cells (bottom) or the naı̈ve cells (top). It can be seen that induction of MKP leads transient activation of

MAP-kinase. Experiments are described in detail in Reference 38. (Figure reprinted from Bhalla US, Ram PT, Iyengar R. MAP kinase

phosphatase as a locus of flexibility in a nitrogen-activated protein kinase network. Science 2002; 297:1018–1023, with permission from

Science Press).

Review articles

1116 BioEssays 24.12



reverse-engineering approach provides quite a bit of insight

into natural processes. For instance, a large set of behaviors

was observed suggesting that even such a well-defined sys-

tem can be subjected to effects from the internal environment

of the bacterial cell. The origins of this complex behavior are

not fully understood. However, having a well-defined system

may make it easier for the study of the environmental effects.

Future analysis will tell if the construction and analysis of arti-

ficial systems that display naturally observed behavior will be

useful in understanding the mechanisms underlying complex

behaviors in biological systems.

Conclusions

The dramatic progress in biochemistry and molecular biology

and the completion of the sequences of many genomes, in-

cluding that of the human have provided us with a reasonably

detailed ‘‘parts list’’ of the cell. From this part lists and our

current knowledge of cellular regulatory systems, we have the

means to understand the principles underlying the dynamic

behavior of cells. This will require an integration of theoretical

and experimental approaches at a variety of levels. Here we

have described some of the approaches that are currently

being applied to study of simple biochemical networks

including intracellular networks. Hopefully, the individual prin-

ciples that can be gleaned from the study of the simple net-

works can be assembled into an interacting set to yield higher

order general principles of dynamical cell function.

References
1. Bhalla US, Iyengar R. Emergent properties of networks of biological

signaling pathways. Science 1999;283:381–387.

2. Weng G, Bhalla US, Iyengar R. Complexity in biological signaling

systems. Science 1999;284:92–96.

3. Jordan JD, Iyengar R. Modes of interactions between signaling

pathways. Biochem Pharmacol 1998;55:1347–1352.

4. Jordan JD, Landau EM, Iyengar R. Signaling networks: the origins of

cellular multitasking. Cell 2000;103:193–200.

5. Heinrich R. Mathematical models of metabolic systems: general prin-

ciples and control of glycolysis and membrane transport in erythocytes.

Biomed Biochim Acta 1985;44:913–927.

6. Leclercq J, Dumont JE. Boolean analysis of cell regulation networks.

J Theor Biol 1983;104:507–534.

7. Ideker T, Galitski T, Hood L. A new approach to decoding life: systems

biology. Annu Rev Genomics Hum Genet 2001;2:343–372.

8. Tyson JJ, Chen K, Novak B. Network dynamics and cell physiology.

Nat Rev Mol Cell Biol 2001;2:908–916.

9. Firth CA, Bray D. Stochastic Simulation of Cell Signaling Pathways. In:

Bower JM, Bolouri H, editors. Computational Modeling of Genetic and

Biochemical Networks. Cambridge, Massachusetts: The MIT Press;

2001.

10. Kholodenko BN, Demin OV, Moehren G, Hoek JB. Quantification of short

term signaling by the epidermal growth factor receptor. J Biol Chem

1999;274:30169–30181.

11. Wu J, Dent P, Jelinek T, Wolfman A, Weber MJ, Sturgill TW. Inhibition of

the EGF-activated MAP kinase signaling pathway by adenosine 30,50-

monophosphate. Science 1993;262:1065–1069.

12. Mischak H, Seitz T, Janosch P, Eulitz M, Steen H, Schellerer M, Philipp A,

Kolch W. Negative regulation of Raf-1 by phosphorylation of serine 621.

Mol Cell Biol 1996;16:5409–5418.

13. Hafner S, Adler HS, Mischak H, Janosch P, Heidecker G, Wolfman A,

Pippig S, Lohse M, Ueffing M, Kolch W. Mechanism of inhibition of Raf-1

by protein kinase A. Mol Cell Biol 1994;14:6696–6703.

14. Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ.

MP1: a MEK binding partner that enhances enzymatic activation of the

MAP kinase cascade. Science 1998;281:1668–1671.

15. Bhalla US, Iyengar R. Functional modules in biological signalling

networks. Novartis Found Symp 2001;239:4–13.

16. Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to

modular cell biology. Nature 1999;402:C47–C52.

17. Neves SR, Ram PT, Iyengar R. Heterotrimeric G Proteins pathways.

Science 2002;296:1636–1939 stke.sciencemag.org

18. Bhalla US. The Network Within: Signaling Pathways. In: Bower JM,

Beeman D, editors. The Book of Genesis. New York: Springer-Verlag;

1998.

19. Mendes P. Biochemistry by numbers: simulation of biochemical path-

ways with Gepasi 3. Trends Biochem Sci 1997;22:361–363.

20. Mendes P, Kell D. Non-linear optimization of biochemical pathways:

applications to metabolic engineering and parameter estimation.

Bioinformatics 1998;14:869–883.

21. Loew LM, Schaff JC. The Virtual Cell: a software environment for com-

putational cell biology. Trends Biotechnol 2001;19:401–406.

22. Koshland DE, Jr, Goldbeter A, Stock JB. Amplification and adaptation in

regulatory and sensory systems. Science 1982;217:220–225.

23. Goldbeter A, Koshland DE Jr. An amplified sensitivity arising from

covalent modification in biological systems. Proc Natl Acad Sci USA

1981;78:6840–6844.

24. Ferrell JE, Jr, Machleder EM. The biochemical basis of an all-or-none cell

fate switch in Xenopus oocytes. Science 1998;280:895–898.

25. Ferrell JE Jr. Building a cellular switch: more lessons from a good egg.

Bioessays 1999;21:866–870.

26. Nebreda AR, Ferby I. Regulation of the meiotic cell cycle in oocytes.

Curr Opin Cell Biol 2000;12:666–675.

27. Ferrell JE, Jr. Xenopus oocyte maturation: new lessons from a good egg.

Bioessays 1999;21:833–842.

28. Huang CY, Ferrell JE, Jr. Ultrasensitivity in the mitogen-activated protein

kinase cascade. Proc Natl Acad Sci USA 1996;93:10078–10083.

29. Huang CY, Ferrell JE Jr. Dependence of Mos-induced Cdc2 activation on

MAP kinase function in a cell-free system. EMBO J 1996;15:2169–2173.

30. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ. cPLA2 is

phosphorylated and activated by MAP kinase. Cell 1993;72:269–278.

31. Nemenoff RA, Winitz S, Qian NX, Van Putten V, Johnson GL, Heasley LE.

Phosphorylation and activation of a high molecular weight form of

phospholipase A2 by p42 microtubule-associated protein 2 kinase and

protein kinase C. J Biol Chem 1993;268:1960–1964.

32. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and

activation of protein kinase C. Science 1992;258:607–614.

33. Shinomura T, Asaoka Y, Oka M, Yoshida K, Nishizuka Y. Synergistic

action of diacylglycerol and unsaturated fatty acid for protein kinase C

activation: its possible implications. Proc Natl Acad Sci USA 1991;88:

5149–5153.

34. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H,

Finkenzeller G, Marme D, Rapp UR. Protein kinase C alpha activates

RAF-1 by direct phosphorylation. Nature 1993;364:249–252.

35. Carroll MP, May WS. Protein kinase C-mediated serine phosphorylation

directly activates Raf-1 in murine hematopoietic cells. J Biol Chem 1994;

269:1249–1256.

36. Brondello JM, Brunet A, Pouyssegur J, McKenzie FR. The dual specificity

mitogen-activated protein kinase phosphatase-1 and -2 are induced by

the p42/p44MAPK cascade. J Biol Chem 1997;272:1368–1376.

37. Bhalla US, Iyengar R. Robustness of the bistable behavior of a biological

signaling feedback loop. Chaos 2001;11:221–226.

38. Bhalla US, Ram PT, Iyengar R. Map kinase phosphatase as a locus of

flexibility in a nitrogen-activated protein kinase network. Science 2002;

297:1018–1023.

39. Ferrell JE. Self-perpetuating states in signal transduction: positive

feedback, double-negative feedback and bistability. Curr Opin Cell Biol

2002;14:140–148.

40. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional

regulators. Nature 2000;403:335–338.

Review articles

BioEssays 24.12 1117


